A counterexample to Aharoni's strongly maximal matching conjecture

نویسندگان

  • Rudolf Ahlswede
  • Levon H. Khachatrian
چکیده

It is conjectured (and proved for edge sets of graphs) in [1] that in every family d of finite sets a subfamily ~ of disjoint sets (called a 'strongly maximal matching') exists, so that no replacement of k of them by more than k sets from a / resu l t s again in a subfamily of disjoint sets. As expected by Erd6s (Introduction of [2]), the conjecture is false. A counterexample is ag, the family of those finite subsets of the set N of natural numbers, whose cardinality and smallest element (in canonical order) are equal. In fact, suppose ,~/ contains a strongly maximal matching ~, then, by our definitions ~ is infinite, has an element B = {bl < b2 < "" < bt} with b I --t >1 3 and

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

A Counterexample to a Conjecture of S.e. Morris

We give a counterexample to a conjecture of S.E. Morris by showing that there is a compact plane set X such that R(X) has no non-zero, bounded point derivations but such that R(X) is not weakly amenable. We also give an example of a separable uniform algebra A such that every maximal ideal of A has a bounded approximate identity but such that A is not weakly amenable.

متن کامل

An explicit counterexample to the Lagarias-Wang finiteness conjecture

The joint spectral radius of a finite set of real d × d matrices is defined to be the maximum possible exponential rate of growth of long products of matrices drawn from that set. A set of matrices is said to have the finiteness property if there exists a periodic product which achieves this maximal rate of growth. J. C. Lagarias and Y. Wang conjectured in 1995 that every finite set of real d× ...

متن کامل

The Existence of a Maximal Green Sequence is not Invariant under Quiver Mutation

This note provides a specific quiver which does not admit a maximal green sequence, and which is mutation-equivalent to a quiver which does admit a maximal green sequence. This provides a counterexample to the conjecture that the existence of maximal green sequences is invariant under quiver mutation. The proof uses the ‘scattering diagrams’ of Gross-Hacking-Keel-Kontsevich to show that a maxim...

متن کامل

A counterexample to the ” maximal subgroup rule ” for continuous crystalline transitions

2014 We describe for the first time a theoretical example contradicting Ascher’s conjecture of a maximal subgroup rule for the symmetry changes at continuous crystalline transitions. The example is that of a 4-dimensional order parameter spanning an irreducible representation of the space-group Go = I41. We show that this order parameter induces transitions towards groups G1 and G2, with G2 ~ G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 149  شماره 

صفحات  -

تاریخ انتشار 1996